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NUMERICAL ANALYSIS OF CONVECTION-DIFFUSION 
PROBLEMS USING THE BOUNDARY ELEMENT METHOD 
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ABSTRACT 
This paper presents a boundary element formulation for transient convection-diffusion problems employing 
the fundamental solution of the corresponding steady-state equation with constant coefficients and a dual 
reciprocity approximation. The formulation allows the mathematical problem to be described in terms of 
boundary values only. Numerical results show that the BEM does not present oscillations or damping of 
the wave front as appear in other numerical techniques. 
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INTRODUCTION 

The solution of the convection-diffusion equation is a challenging task for all numerical methods 
because of the nature of the equation, which includes first-order and second-order partial 
derivatives in space. According to the value of the Péclet number, the equation becomes parabolic 
(for diffusion-dominated processes) or hyperbolic (for convection-dominated processes). 
Traditional finite difference and finite element algorithms are generally accurate for solving the 
former but not the latter, in which case oscillations and smoothing of the wave front are 
introduced. This can be interpreted as an 'artificial diffusion' intrinsic to these methods1-4. 

Applications of the boundary element method to steady-state convection-diffusion have shown 
that the BEM seems to be relatively free from these problems5-7. This was also the case for 
some transient applications using formulations with time-dependent fundamental solutions8,9. 
The main restriction of these formulations, however, is the fact that fundamental solutions are 
only available for equations with constant coefficients, or coefficients with very simple variations 
in space10. Alternative formulations for transient problems have employed the fundamental 
solution of the diffusion equation and treated the convective terms as pseudo-sources, thus 
allowing for variable velocity fields11. The disadvantage of such approach is that a domain 
discretization is required to account for the pseudo-sources. 

This work presents a boundary element formulation for the solution of transient 
convection-diffusion problems based on a dual reciprocity scheme12. The domain integral 
resulting from the dual reciprocity approach is transformed into equivalent boundary integrals 
by expanding the time-derivative term as a summation of approximating functions and 
introducing particular solutions which satisfy an associated non-homogeneous steady-state 
convection-diffusion equation. Thus, the problem is ultimately described in terms of boundary 
values only, consequently reducing its dimensionality by one. Although only problems with 
constant velocity are analysed herein, the formulation can be extended to deal with variable 
velocity fields using a similar dual reciprocity approach13. 
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Results of several analyses are presented and compared to analytical solutions. They show 
that the boundary element formulation developed in this work does not display any artificial 
diffusion or oscillatory behaviour, thus precluding the need for 'upwind' or other algorithms 
common to finite element analysis. 

BEM FORMULATION FOR STEADY-STATE PROBLEMS 
The two-dimensional steady-state convection-diffusion equation including first-order reaction 
can be written in the form: 

where vx and vy are the components of the velocity vector v, D is the diffusivity coefficient 
(assuming the medium is homogeneous and isotropic) and k represents the reaction coefficient. 
The variable  can be interpreted as temperature for heat transfer problems, concentration for 
dispersion problems, etc. and will be herein referred to as a potential. The mathematical 
description of the problem is complemented by boundary conditions of the Dirichlet, Neumann 
or Robin (mixed) types. 

The above differential equation can be transformed into an equivalent integral equation by 
applying a weighted residual technique. Starting with the weighted residual statement: 

and integrating by parts twice the Laplacian and once the first-order derivatives the following 
equation is obtained: 

where vn = v-n, n is the unit outward normal vector and the dot stands for scalar product. 
In the above equation, * is the fundamental solution of (1), i.e. the solution of: 

in which ξ and x are the source and field points, respectively, and δ is the Dirac delta. It can 
be noticed that the sign of the first-order derivatives is reversed in (1) and (4), since this operator 
is not self-adjoint. For two-dimensional problems, * is of the form: 

where 

and r is the modulus of r, the distance vector between the source and field points. The derivative 
of the fundamental solution with respect to the outward normal direction is given by: 

In the above, K0 and K1 are Bessel functions of second kind, of orders zero and one, respectively. 
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Equation (3) permits calculating the value of  at any internal point once the boundary values 
of  and ∂/∂n are all known. In order to obtain a boundary integral equation, the source point 
ξ is taken to the boundary and a limit analysis carried out due to the jump of ∂*/∂n. The result is: 

in which c(ξ) is a function of the internal angle the boundary Г makes at point ξ14. 

NUMERICAL SOLUTION 
For the numerical solution of the problem, (8) is written in a discretized form in which the 
integrals over the boundary are approximated by a summation of integrals over individual 
boundary elements, i.e. 

where the index i stands for values at the source point ξ and N elements have been employed. 
In the above equation, it can be seen that: 

Next, the variation of functions  and ∂/∂n within each element are approximated by 
interpolating from the values at the element nodes. Herein, linear elements are used, for which 
the expressions are: 

where Ф1 and Ф2 are linear interpolation functions. Substituting the above into (9), the following 
expression is obtained: 

Note that the indexes 1 and 2 refer to the nodal (extreme) points of each element, and 

Adding up the contributions of adjoining elements to each nodal point, (11) can be rewritten as: 

The above equation involves N values of  and N values of q, half of which are prescribed 
as boundary conditions. In order to calculate the remaining unknowns, it is necessary to generate 
N equations. This can be done by using a simple collocation technique, i.e. by making the 
equation be satisfied at the N nodal points. The result is a system of equations of the form: 
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where the ci values have been incorporated into the diagonal coefficients of matrix H. After 
introducing the boundary conditions, the system is reordered and solved by a direct method, e.g. 
Gauss elimination. 

Evaluation of the coefficients of matrices H and G is carried out numerically. For the 
off-diagonal terms, a selective Gaussian integration with number of integration points as a 
function of the distance between source point and field element is employed14. The diagonal 
coefficients of matrix G have a weak singularity of the logarithmic type, and are calculated using 
the self-adaptive scheme of Telles15. The coefficients Hii can be calculated, in the absence of the 
reaction term, by noting that a consistent solution for a prescribed uniform potential along the 
boundary can only be obtained if matrix H is singular, i.e. 

However, when k≠0, there is flux when a uniform potential is applied (or, in other words, the 
zero flux state is achieved for non-uniform potential distribution). In this case, the coefficients 
Hii have to be evaluated explicitly. These terms are composed of two parts, one being a sum of 
integrals of the form hk

tj and the other the free term ci. The former also possesses a logarithmic 
singularity, and is calculated using Telles' scheme15. The free terms ci depend solely on geometry, 
and have the same values as for Laplace's equation13. 

APPLICATIONS FOR STEADY PROBLEMS 
To show the performance of the boundary element scheme, two numerical applications were 
studied. The first is the one-dimensional problem of a long bar moving at a constant velocity; 
the second is a plate with a sinusoidal potential distribution along one face, with first-order 
reaction. 

Moving bar 
The BEM formulation was initially tested with the problem of a bar moving parallel to the 

x-axis with constant velocity vx and with specified potential at the edges, i.e. 0 = 300 at x=0 
and =0 at x=L. Other values adopted were D=1, k=0. The problem was analysed as 
two-dimensional with cross-section 6.0x0.7, with the boundary condition ∂/∂n=0 specified 
along the faces parallel to the x-axis. Symmetry was taken into account by reflection and 
condensation14, thus only the upper half of the region needed be considered. A sketch of the 
problem is shown in Figure 1. 

The discretization employed 17 elements on the longer side and 1 element on each of the 
smaller ones, making up a total of 19 linear elements and 22 nodes, for double nodes were used 
in the corners to allow for the discontinuity of the normal vector at these points14. 

Results are plotted in Figures 2 and 3 for several velocity values, compared with the analytical 
solution: 

It can be seen from the Figures that the agreement between the two solutions is excellent. 
To further test the numerical formulation for high velocity values, Table 1 presents the BEM 

results obtained with the same discretization of Figure 1 for a range of values of vx for which 
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the analytical solution gives 0 = 300 at all points in the Table. It is interesting to note that even 
for vx = 500, corresponding to a local Péclet number of Pe = 176, the maximum deviation between 
the BEM and analytical solutions is less than 10%. It is also of remark that oscillations are 
more pronounced at the centre of the bar rather than near the boundary layer, as would be 
expected, and no smoothing of the wave front is introduced. 



8 L. C. WROBEL AND D. B. DEFIGUEIREDO 

Table 1 Potential values for different velocities 

x 

0.3 
0.6 
1.2 
1.8 
2.4 
3.0 
3.6 
4.2 
4.8 
5.4 
5.7 

v x=50 

300.0 
300.0 
300.0 
300.0 
300.0 
300.0 
300.0 
300.0 
300.0 
300.0 
300.0 

vx= 100 

300.0 
300.0 
300.0 
300.0 
300.1 
299.9 
299.9 
299.9 
299.9 
299.9 
299.9 

vx=200 

300.3 
298.6 
300.0 
300.0 
303.8 
301.7 
300.8 
300.4 
300.2 
300.1 
300.1 

vx=300 

300.2 
296.0 
299.7 
300.0 
311.4 
306.4 
303.7 
302.2 
301.3 
300.9 
300.8 

vx=400 

298.9 
295.4 
298.7 
299.9 
320.9 
313.3 
308.6 
305.6 
303.8 
302.6 
302.2 

vx=500 

296.7 
298.1 
297.4 
299.7 
329.9 
321.4 
314.7 
310.3 
307.4 
305.4 
304.7 

Plate with first-order reaction 
The potential distribution in a plate with the geometry and boundary conditions shown in 

Figure 4 was studied next for a range of values of the velocity vx (from 0 to 8.33) and the reaction 
coefficient k (from 0 to 13.88). The discretization employed 20 linear elements and 23 nodes 
(with double nodes at corners), taking symmetry into account. A unit value was assumed for 
coefficient D. 

The results for the potential along the centre line (y=1/2) obtained with the present boundary 
element scheme are plotted in Figures 5 to 7, compared with the following analytical solution: 

where 

and L and l are the dimensions in the x and y directions, respectively 6.0 and 4.0 in the present case. 
It can be seen in the Figures that the results compare very well with the analytical solution 

for all values of k, showing again no oscillations or damping. 

BEM FORMULATION FOR TRANSIENT PROBLEMS 
The two-dimensional transient convection-diffusion equation including first-order reaction can 
be written in the form: 

where the variables are defined as for the steady-state case. Since the problem is now transient, 
initial values of  at time t0 should also be provided. 
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Applying a weighted residual technique to the above equation, using as weighting function 
* the fundamental solution of the corresponding steady-state equation (expression 5), we obtain 
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Integrating by parts twice the Laplacian and once the first-order space derivatives gives 

The corresponding boundary integral equation, for a source point ξ on the boundary, takes 
into account the jump of ∂*/∂n, in the form 

DUAL RECIPROCITY APPROACH 
In order to obtain a boundary integral which is equivalent to the domain integral in (17) and 
(18), a dual reciprocity approximation is introduced12. The basic idea is to expand the 
time-derivative ∂/∂t in the form, 

where the dot denotes temporal derivative. The above series involves a set of known functions 
fk which are dependent only on geometry, and a set of unknown coefficients ak which are 
time-dependent only. With this approximation, the domain integral becomes 

The next step is to consider that, for each function fk, there exists a related function ψk which 
is a particular solution of the equation: 
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Thus, the domain integral can be recast in the form: 

Substituting expansion (22) into (18), and applying integration by parts to the right side of 
the resulting equation, one finally arrives at a boundary integral equation of the form 

NUMERICAL SOLUTION 
For the numerical solution of the problem, (23) is discretized in a similar way to (9), i.e. 

Next, the variation of functions , q = ∂/∂n, ψ and η = ∂ψ/∂n within each boundary element 
is approximated by interpolating from the values at the element nodes. It should be noted that 
functions ψ and η need not be approximated as they are known functions for a specified set f. 
However, doing so will greatly improve the computer efficiency of the technique with only a 
minor sacrifice in accuracy. 

Applying (24) to all boundary nodes, taking into account the previous interpolations, results 
in the following system of equations (see expression 13): 

In the above system, the same matrices H and G as for steady problems are used on both sides. 
Matrices ψ and η are also geometry-dependent square matrices (assuming, for simplicity, that 
the number of terms in expansion (19) is equal to the number of boundary nodes), and , q 
and a are vectors of nodal values. 

By applying expression (19) at all boundary nodes and inverting, one arrives at: 

which, substituted into (25) results in: 

with 

System (27) can be integrated in time using standard time-stepping procedures. It should be 
stressed that the coefficients of matrices H, G and C all depend on geometry only, thus they 
can be computed once and stored. 

Employing a general two-level time integration scheme for solution of (27), the following 
discrete form is obtained: 
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where 9 is a parameter which positions the values of  and q between time levels m and m+1. 
The right side of (28) is known at all times. Upon introducing the boundary conditions at time 
(m+1)∆t the left side of the equation can be rearranged and the resulting system solved by 
using a standard direct procedure like Gauss elimination. 

CHOICE OF FUNCTION f 
Previous works on dual reciprocity schemes have shown that although a variety of functions 
can in principle be used as a basis for the approximation of , best results are normally obtained 
with simple expansions, the most popular of which isf=l + r, where r is the distance between 
pre-specified fixed points (poles) and the boundary nodes12. This choice is based on practical 
experience rather than formal mathematical analysis. 

In the present work, it was decided to start with a simple form of particular solutionψ and 
find the corresponding expression for/by direct substitution into (21). The resulting expressions 
are: 

in which (xk, yk) and (x, y) are the coordinates of the kth pole and a general point, respectively. 
The above choice was motivated by a previous successful experience with axisymmetric 

diffusion problems in which a similar approach was used16. It is interesting to notice that the 
set of functions/produced depends not only on r but also on the diffusivity, velocity components 
and the reaction rate, thus it will behave differently when diffusion or convection is the dominating 
process. 

APPLICATIONS 
The dual reciprocity boundary element formulation developed in this work was initially applied 
to the moving bar problem previously analysed in a steady state, assuming the initial condition 
 0 = 0 . The geometrical and physical parameters are the same as before, and the discretization 
again that of Figure 1 with an extra internal pole at the centre of the rectangular region. The 
discontinuity of the normal flux at corners was considered by allowing corner nodes to have 3 
degrees of freedom, i.e. , ∂/∂n before the corner and ∂/∂n after the corner, and prescribing 
2 of these values. It is noted that the use of double nodes is not permitted with the dual reciprocity 
scheme because it leads to equal rows and columns in matrix F, rendering it singular and 
non-invertible. 

Results for the variation of  along x, at several time levels, are presented in Figures 8 to 10 
for the velocity values vx=0.2, 1.0 and 6.0, respectively, compared to analytical solutions17. The 
BEM results were obtained using 0=1 in (28) and a variable time step. The starting value of 
At was 0.10 for vx=0.2, 0.025 for vx=1.0 and 0.01 for vx=6.0, but these values were increased 
during the analysis. It can be seen from the graphs that the accuracy of the dual reciprocity 
boundary element formulation is very good in all cases, with no oscillations or damping of the 
wave front. 

Next, a similar problem was studied with the downstream boundary condition ∂/∂n=0 at 
x=L and introducing first-order reaction. Once more, the discretization of Figure 1 was 
employed, with 0=1 and ∆t=0.05. Figures 11 to 16 present results for different values of vx 
and k, i.e. vx=l or 6 and k=0, 0.278 or 1.389. The agreement with the analytical solutions 
given by van Genuchten and Alves18 is again excellent. 
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CONCLUSIONS 
This paper presented a formulation of the boundary element method for two-dimensional 
transient convection-diffusion problems, employing the fundamental solution of the 
corresponding steady-state equation and a dual reciprocity approximation of the time-derivative 
of ø. Results of applications have shown that the solutions do not display numerical problems 
of oscillations and damping of the wave front, common in finite difference and finite element 
formulations. It should be stressed that the formulation can be extended to variable velocity 
fields by splitting these into a constant part and a perturbation, and applying a similar dual 
reciprocity approximation to the perturbation19. 
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